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ABSTRACT 

Existence of solution of impulsive Lipschitzian quantum stochastic differential equations (QSDEs) associated 

with the Kurzweil equations are introduced and studied. This is accomplished within the framework of the                       

Hudson-Parthasarathy formulation of quantum stochastic calculus and the associated Kurzweil equations. Here again, the 

solutions of a QSDE are functions of bounded variation, that is they have the same properties as the Kurzweil equations 

associated with QSDEs introduced in [1, 4]. This generalizes similar results for classical initial value problems to the 

noncommutative quantum setting. 
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INTRODUCTION 

Impulsive effects exist widely in many evolution processes in which states are changed abruptly at certain 

moments of time, involving such fields as biology, medicine, economics, mechanics, electronics, Physics, etc                        

[2, 3, 8, 9, 12, 13, 15, 18]. Thus the qualitative properties of the mathematical theory of impulsive differential systems are 

very important. A lot of dynamical systems have variable structure subject to stochastic abrupt changes, which may result 

from abrupt phenomena such as stochastic failures and repairs of components, sudden environmental changes, etc                   

[8, 10, 20-22].  

Recently, stochastic differential equations have attracted a great attention, since they have been used extensively 

in many areas of application including finance and social science [8-10, 12, 13, 20-22] The existence, uniqueness and 

asymptotic behavior of solutions of stochastic differential equations have been considered by many authors [2, 3, 8, 9, 13]. 

However, within the framework of the Hudson and Parthasarathy [11] formulation of QSDE not much has been done.                 

In [15] the existence of QSDE that exhibit impulsive effects was established using fixed point theorem.  

In [1], the equivalence of the non classical ODE (QSDE) and the associated Kurzweil equation was established 

along side with some numerical examples. It is worth mentioning that the results in [1] have proved to be very efficient 

when compared with results obtained from other schemes. Again using this method in [4], we studied Measure quantum 

stochastic differential systems (systems that exhibit discontinuous solutions) with examples. We established such results by 

considering the associated Kurzweil equations [4, 9, 17]. The motivation for studying the existence of solution for 

impulsive QSDE associated with Kurzweil equations is so that we can subsequently use the method in [1] to obtain similar 

approximate results for this class of QSDEs. 

In this paper we describe another approach to systems that exhibit impulsive behaviour. We rely on the 

formulations of [1] concerning the equivalent QSDE and the associated Kurzweil equation. The methods are simple 

extension of the methods applied in [14, 16-19] to this non commutative quantum setting involving unbounded linear 
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operators in locally convex spaces. Hence the results obtained here are generalizations of similar results obtained in                 

[16, 17] concerning classical initial value problems. The rest of this paper is organized as follows. 

In section 2 we present some definitions, preliminary results and notations. In section 3, we establish the main 

results. 

All through the remaining sections, as in [1, 4, 6, 7] we employ the locally convex topological space Ã of non 

commutative stochastic processes. We also adopt the definitions and notations of the following spaces Ad(Ã), Ad(Ã)wac , 

����� (Ã) , ����∞ (ℝ	) , C(Ã×[a, b], W), ℱ(Ã × [a, b], h�� , W) and the integrator processes ΛΠ, ��	, ��. We consider the 

quantum stochastic differential equation in integral form given by 

 �(�) = �� + � ����, �(�)��Λ�(�) + ���, �(�)����	(�) + ���, �(�)����(�) + ���, �(�)����, �	!	"��, #$																							(1.1)	'�  

In equation (1.1), the coefficients E, F, G, and H lie in a certain class of stochastic processes for which quantum 

stochastic integrals against the gauge, creation, annihilation processes	Λ� , ��	, �� and the Lebesgue measure t are defined 

in [7]. In the work of [7], the Hudson and Parthasarathy [11] quantum stochastic calculus was employed to establish the 

equivalent form of quantum stochastic differential equation (1.1) given by 

 	 (
(' 〈�, �(�)�〉 = +(�(�), �)(�, �) 

�(��) = ��	, �	!	"��, #$	,																																																																																																																																																												(1.2)  

where �, �	lie in some dense subspaces of some Hilbert spaces which has been defined in [7]. For the explicit form 

of the map +(,, �) → +(,, �)(	�, �	) appearing in equation (1.2), see [1, 7]. Equation (1.2) is a first order non-classical 

ordinary differential equation with a sesquilinear form valued map P as the right hand side. In [1], the equivalence of the 

non-classical ordinary differential equation (1.2) with the associated Kurzweil equation 

 
(

	(. 〈�, �(/)�〉 = 0�(�(/), �)(�, �) , �	!	"��, #$                                                                                                     (1.3) 

was established along with some numerical examples. The map F in (1.3) is given by 

 �(,, �)(�, �) = � +'� (,, �)(�, �)��																																																																																																																																						(1.4) 

2. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS 

We shall employ certain spaces of maps (introduced above) whose values are sesquilinear forms on (2 ⊗ 4	).  

2.1 Definition 

A member 5	 ∈ ��(7, 2 ⊗ 4	) is: 

• Absolutely continuous if the map t→ 5(�)(�, �) is absolutely continuous for arbitrary �, � ∈ 2 ⊗ 4  

•  of bounded variation if over all partition {�9}9;�<  of I, 

 Sup@(∑ BZ�tE�(η, ξ) − 	Z(tEGH)(η, ξ)B)IE;H < ∞. 

• of essentially bounded variation if z is equal almost everywhere to some member of ��(7, 2 ⊗ 4	) of bounded 

variation. 

• A stochastic process � ∶ "��, #$ ⟶ MN is of bounded variation if 



On Existence of Solution for Impulsive Perturbed Quantum Stochastic          53 
Differential Equations and the Associated Kurzweil Equations 

 Sup (∑ B〈η, X(tE)ξ〉 − 〈η, X(tEGH)ξ〉B)IE;H < ∞. 

for arbitrary �, � ∈ 2 ⊗ 4 and where supremum is taken over all partitions  

{�9}9;�<  of I. 

2.2 Notation 

We denote by BV(Ã) the set of all stochastic processes of bounded variation on I. 

2.3 Definition 

For x ∈ BV(Ã), define for arbitrary �, � ∈ 2 ⊗ 4 , 

 Var"S,T$�UV = Sup.(∑ W���9� − �(�9GH)WUV)<9;H  

where τ is the collection of all partitions of the interval [a, b] ⊂ I. If [a, b] = I, we simply write VarY�UV = Var�UV. 

Then {Var�UV, �, � ∈ 2 ⊗ 4	} is a family of seminorms which generates a locally convex topology on BV(Ã). 

2.4 Notation 

• We denote by Z[\\\\(Ã) the completion of BV(Ã) in the said topology. 

• For any member Z of ��(7, 2 ⊗ 4	) of bounded variation, we write Var]UV for its variation on [a, b] ⊆ I. 

• We denote by A:= BV(Ã)∩ Ad(Ã)wac the stochastic process that are weakly, absolutely continuous and of 

bounded variation on [��,T]. 

• We denote by _(MN × "��, #$, a) the class of sesquilinear form – valued maps which are Lipschitzian and satisfy 

the Caratheodory conditions as defined below.  

• We denote by ℱ(MN × "��, #$, ℎUV , a) the class of sesquilinear form – valued maps that are Kurzweil integrable as 

defined below. 

2.5 Definition 

For each �, � ∈ 2 ⊗ 4	let ℎUV : "��, #$ ⟶ ℝ	be a family of non decreasing function defined on [��, T] and 

a: "0,∞) ⟶ ℝ	be a continuous and increasing function such that a(0) = 0. Then we say that the map � ∶ 	 MN × "��, #$ ⟶
�e�f�2 ⊗ 4	� belongs to the class ℱ(MN × "��, #$, ℎUV , a) for each �, � ∈ 2 ⊗ 4	if for all ,, g	 ∈ MN, �h�H ∈ "��, #$ 

• |�(,, �h)(�, �) − 	�(,, �H)(�, �)| ≤ BℎUV(�h) − ℎUV(�H)B                                                                                      (2.1)  

• |�(,, �h)(�, �) − 	�(,, �H)(�, �) + �(g, �h)(�, �) − 	�(g, �H)(�, �)	| 
 ≤a(‖, − g‖UV)BℎUV(�h) − ℎUV(�H)B                                                                                                                    (2.2)  

Next we give a result that connects the class _(MN × "��, #$, a)with the class ℱ(MN × "��, #$, ℎUV , a). 
2.6 Definition 

A map + ∶ 	 MN × "��, #$ ⟶ �e�f(2 ⊗ 4	) is of the class _(MN × "��, #$, a) if for arbitrary �, � ∈ 2 ⊗ 4. 
• +(,, . )(�, �) is measurable for each ,	 ∈ MN.  
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• There exists a family of measurable functions lUV : "��, #$ ⟶ ℝ	 such that 

 � lUV(�)��m'n < ∞ and |+(,, �)(�, �)| ≤ lUV(�), (,, �) ∈ MN × "��, #$                                                               (2.3) 

• There exists a family of measurable functions oUV� : "��, #$ ⟶ ℝ	 such that for each � ∈ "��, #$, � oUV(�)��m'n < ∞, 
and  

|+(,, �)(�, �) − 	+(,, �)(�, �)| ≤ 	 oUV� (�)a�‖, − g‖UV�																																																																																															(2.4) 

For (,, �), (g, �) ∈ MN × "��, #$ and all through a(�) = �.  
MAJOR RESULTS 

Assume that the set �(η, ξ) defined in [6] is compact in ℂ, "��, #$ ⊆ I. Let + ∶ MN × "��, #$ ⟶ �e�f(2 ⊗ 4	) 

satisfy the conditions (2.3) and (2.4). Further let a finite set of points �r ∈ "��, #$, i =1, 2, …, k be given with �r < �r	H for              

i =1, 2, …,k-1 and a system of k continuous maps  

 5r: � → �e�f�2 ⊗ 4	�, s = 1, 2, … , v  

The QSDE with impulsive action at the fixed points �H, �h, … , �w is of the form  

													�(�) = �� + x �E�t, X(s)�dΛ|(s) + F�s, X(s)�dA�	(s) + G�s, X(s)�dA�(s) + H�s, X(s)�ds� 	�
�

+ � z�(x)H��(t)
������

	,			t ≠ t�																																																																																																																															(3.1) 

∆,|';'� = ,(�r	) − 	,(�rG) = 	 5r�,(�r)�																																																																																																																																(3.2) 

The equivalent form of (3.1) and (3.2) is given by  

																 ��� 〈�, ,(�)�〉 = +(,, �)(�, �) + � 5r�,UV��UV,'�(�)
��'��'

	,			� ≠ �r 																																																																																			(3.3) 

 〈�, ∆,�〉|';'� = 〈�, ,(�r	)�〉 	 − 	〈�, ,(�r)�〉 = 	 〈�, 5r(,(�r))�〉																																																																																							(3.4) 

The equation (3.3) describes the behaviour of the state at the points different from �r , s = 1, 2, … , v and (3.4) 

represents the discontinuity from the right of the solution for � = �r	and satisfy the Lipschitz conditions defined in 2.6. 

Equation (3.3) is given in integral form as  

〈�, ,(�)�〉 − 〈�, ,(0)�〉 = x +(,, �)(�, �)�� + � 5r�,UV��UV,��(�)
������

'
� 				 

The Kurzweil equation associated with equation (3.3) is given by  

��� 〈�, ,(/)�〉 = 0"�(,(/), �)(�, �) + � 5r�,UV��UV,'�(�)$
��'��'

	,			� ≠ �r 																																																																						(3.5) 

The differential system with impulses (3.3) and (3.4) is best described by its solution as follows: 

3.1 Definition 

A stochastic process ,: "�, �$ ⊂ "��, #$ → Ã is called a solution of the quantum stochastic differential                     
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equation (3.3) and (3.4) if (,(�), �) ∈ � × "��, #$ for � ∈ "�, �$, , ∈ ��(Ã)�S� on every interval "��, �H$ ∩ "�, �$, (�r, �r	H$ ∩
"�, �$, s = 1, 2, … , v − 1, (�w, �$ ∩ "�, �$ and  

 〈�, ,(�h)�〉 − 〈�, ,(�H)�〉 = 	 � +'� (,, �)(�, �)�� + 	 ∑ 5r�,UV��UV,'�(�)��'��' , �H, �h ∈ "��, #$.  
For a given � ∈ "��, �) define �UV,((�) = 0	for	� ≤ �, �UV,((�) = 1	for	� > �. 

Where the relationship between the maps P and F is as defined below in definition 3.2. 

3.2 Definition 

�(,, �)(�, �) = x +'
� (,, �)(�, �)�� + 	 � 5r�,UV��UV,'�(�)

��'��'
	 , �� = 0																																																																								(3.6) 

Where � ∶ 	 MN × "��, #$ ⟶ �e�f(2 ⊗ 4	) belongs to the class ℱ(MN × "��, #$, ℎUV , a) for each �, � ∈ 2 ⊗ 4.  
The following result is a consequence of definition 3.1. 

3.2 Theorem 

A stochastic process : "�, �$ → Ã	, "�, �$ ⊂ "��, #$ is a solution of the nonclassical differential equation (3.3) with 

impulses (3.4) on "�, �$ if and only if , satisfies definition (3.1). 

Proof 

Assume that the stochastic process ,: "��, #$ → Ã is a solution of equation (3.3), then for � ∈ (�r , �r	H$,  
 � +(,(�), �)(�, �)�� = � (

(�
'�'� 〈�, ,(�)�〉�� 

 � (
(� 〈�, ,(�)�〉��'�� + � (

(� 〈�, ,(�)�〉��'�'� + ⋯ + � (
(� 〈�, ,(�)�〉��''�  

 = "〈�, ,(�HG)�〉 − 〈�, ,(0	)�〉$ + "〈�, ,(�hG)�〉 − 〈�, ,(�H	)�〉$ + ⋯ + 

                              +"〈�, ,(�G)�〉 − 〈�, ,(�r	)�〉$ 
 = "〈�, ,(�HG)�〉 − 〈�, ,(0)�〉$ + "〈�, ,(�hG)�〉 − 〈�, ,(�H	)�〉$ + ⋯ + 

                              +"〈�, ,(�)�〉 − 〈�, ,(�r	)�〉$ 
 = 〈�, ,(0)�〉 − "〈�, ,(�H	)�〉 − 〈�, ,(�HG)�〉$ − "〈�, ,(�h	)�〉 − 〈�, ,(�hG)�〉$ − ⋯ − 

                              −"〈�, ,(�r	)�〉 − 〈�, ,(�rG)�〉$ + 〈�, ,(�)�〉 
Hence 

 〈�, ,(�)�〉 − 〈�, ,(0)�〉 = � +(,(�), �)(�, �)��'� + "〈�, ,(�H	)�〉 − 〈�, ,(�HG)�〉$ +	 
                 +"〈�, ,(�h	)�〉 − 〈�, ,(�hG)�〉$ + ⋯ + "〈�, ,(�r	)�〉 − 〈�, ,(�rG)�〉$ 
= 〈�, ,(0)�〉 + x +(,(�), �)(�, �)��'

� + � ∆,UV(�r)
��'��'

 

= 〈�, ,(0)�〉 + x +(,(�), �)(�, �)��'
� + � 5r(,UV(�r))

��'��'
�UV,'�(�)																																																																												(3.7) 
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	Conversely, if ,(. ) ∈ � satisfies (3.7) for � ∈ (�r, �r	H),	since ∑ 5r(,UV(�r))��'��' 	is a constant and its derivative is 

zero for � ≠ �r	, s = 1, 2, … , v. Hence, we deduce that  

 
(

(' 〈�, ,(�)�〉 = +(,, �)(�, �)	, � ≠ �r 	 
 〈�, ,(0)�〉 = 	 〈�, ,��〉, and 

 〈�, ,(�r)�〉 = 〈�, ,(�r	)�〉 	− 	〈�, ,(�rG)�〉	 
= "〈�, ,(0)�〉 + x +(,(�), �)(�, �)��'�

� + � 5r �,UV(�r)�
w

r;H
�UV,'�(�)$ 

= "〈�, ,(0)�〉 + x +(,(�), �)(�, �)��'�
� + � 5r �,UV(�r)�

wGH

r;H
�UV,'�(�)$ 

= 5r �,UV(�r)� = 〈�, 5r(,(�r))�〉. 
We have the following results that connect the two classes of maps �	and	+ together. 

3.2 Theorem 

For each �, � ∈ 2 ⊗ 4	Assume that the map � ∶ 	 MN × "��, #$ ⟶ �e�f(2 ⊗ 4	) belongs to the class                

ℱ(MN × "��, #$, ℎUV , a) and + ∶ 	 MN × "��, #$ ⟶ �e�f(2 ⊗ 4	) belongs to the class (MN × "��, #$, a). Then for every                  

,, g	 ∈ MN, �h, �H ∈ "��, #$, �(,, �)(�, �) defined by (3.6) satisfies  

• |�(,, �h)(�, �) − 	�(,, �H)(�, �)| ≤ � lUVH (�)��'�'� +_UV � lUVh (�)��'�'�   

• |�(,, �h)(�, �) − 	�(,, �H)(�, �) + �(g, �h)(�, �) − 	�(g, �H)(�, �)	| 
≤ a(‖, − g‖UV) � oUV� (�)��m'n   

The map �(,, �)(�, �) is of class ℱ(MN × "��, #$, ℎUV , a) for each �, � ∈ 2 ⊗ 4, where  

ℎUV(�) = x lUV(�)��'
'n

+ x oUV� (�)��'
'n

 

Proof 

Since �(�, �) is compact and the maps are continuous, there exists a constant _UV ≥ 0 such that                      

|〈�, 5r(,)�〉| ≤ _UV for all ,UV ∈ �(�, �)	� �	s = 1, 2, … , v. Therefore since (2.3) holds we have by (3.6) and for all 

, ∈ �(�, �), �h, �H ∈ "��, #$  
 |�(,, �h)(�, �) − 	�(,, �H)(�, �)| ≤ 

≤ ¡x +(,, �)(�, �)��'�
'�

¡ +_UV ¢� �UV,'�(�h) − �UV,'�(�H)w

r;H
¢ 

 ≤ � lUVH (�)��'�'� +_UV � lUVh (�)��'�'�  

 ≤ BℎUVH (�h) − ℎUVH (�H)B+_UVBℎUVh (�h) − ℎUVh (�H)B 
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where ℎUVH : "��, �$ → ℝ is as defined in [4] where �H(,, �)(�, �) = � +'� (,, �)(�, �)�� belongs to the class                   

ℱ(MN × "��, #$, ℎUVH , 	aH) and  

ℎUVh (�) = � �UV,'�(�)w

r;H
, � ∈ "��, #$.	 

Clearly ℎUVh  is nondecreasing and continuous from the left on "��, #$. If ah is the common modulus of continuity 

of the finite systems of mappings 5r , s = 1, 2, … , v then  

 ‖5r(,) − 5r(g)‖UV ≤ ah(‖, − g‖UV) 

for ,, g ∈ �. Using the information from [1, 4] on the Caratheodory equations, we obtain  

 |�(,, �h)(�, �) − 	�(,, �H)(�, �) + �(g, �h)(�, �) − 	�(g, �H)(�, �)	| 
 ≤ aH(‖, − g‖UV)BℎUVH (�h) − ℎUVH (�H)B+ah(‖, − g‖UV)BℎUVh (�h) − ℎUVh (�H)B 
for ,, g ∈ �(�, �) and �h, �H ∈ "��, #$. The first term correspond to P and for the second term in (3.6) we have the 

following estimate 

¢� �5r�,UV� − 5r�gUV�� (�UV,'�(�h)w

r;H
− �UV,'�(�H))¢ 

 ≤ ah(‖, − g‖UV) ∑ (�UV,'�(�h) −wr;H �UV,'�(�H)) 

 ≤ ah(‖, − g‖UV)BℎUVh (�h) − ℎUVh (�H)B 
where If we take ℎUV(�) = ℎUVH (�) + ℎUVh (�) for � ∈ "��, #$ and a(£) = aH(£) + ah(£) then we obtain that the 

map �(,, �)(�, �) defined by (3.6) belongs to the class ℱ(Ã × [a, b], h��, W).  

We now present the major result in this section. 

3.3 Theorem 

A stochastic process : "�, �$ → Ã	, "�, �$ ⊂ "��, #$ is a solution of the nonclassical differential equation (3.3) with 

impulses (3.4) on "�, �$ if and only if , is a solution of (3.5). 

Proof 

That a stochastic process ,: "�, �$ → Ã	is a solution of the nonclassical differential equation (3.3) with impulses 

(3.4) on "�, �$. By theorems 3.2 and 4.4 in [1], the integral � 0�(,(/), �)(�, �)'�'�  exists and  

〈�, ,(�h)�〉 − 〈�, ,(�H)�〉 = x +(,(�), �)(�, �)��'�
'�

+ � 5r(,UV(�r))
wGH

r;H
�UV,'�(�) 

= x 0"�(,(/), �)(�, �)'�
'�

+ � 5r(,UV(�r))
wGH

r;H
�UV,'�(�)$																																																																																																					(3.8) 

for all �H, �h ∈ "�, �$.	Hence , is a solution of (3.5). 
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Conversely, if , is a solution of (3.5), then by theorem 3.2 , satisfies eq. (3.3). Since �(,(/), �)(�, �) is of class 

ℱ(Ã × [a, b], h��, W), we have  

〈�, ,(�h)�〉 − 〈�, ,(�H)�〉 = ¢x 0"�(,(/), �)(�, �) + � 5r(,UV(�r))
wGH

r;H
�UV,'�(�)$'�

'�
¢ 

≤ BℎUVH (�h) − ℎUVH (�H)B+_UVBℎUVh (�h) − ℎUVh (�H)B																																																																																																															(3.9) 

Hence by theorem 5.1 in [1], we have  

x +(,(�), �)(�, �)��'�
'�

+ � 5r(,UV(�r))
wGH

r;H
�UV,'�(�) = x 0"�(,(/), �)(�, �)'�

'�
+ � 5r(,UV(�r))

wGH

r;H
�UV,'�(�)$. 

The theorem has established the fact that , is a solution of (3.5) if and only if (3.8) holds by equation (3.9).                

This follows if and only if equation (3.3) and (3.4) hold, and the theorem is established. 

REMARK 

The above result holds since the equivalence of the two equations have been established in [1]. This work would 

have applications in the theory of quantum continuous measurements and in areas such as mechanics, electrical 

engineering, medicine biology, and ecology. 

CONCLUSIONS 

We have established existence of solutions for a class of impulsive quantum stochastic differential equations 

associated with the Kurzweil equations, which generalizes analogous results due to the references [15, 17-19].  
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